General

Turbomolecular Pumps

General

The turbomolecular pumps from Leybold generate a clean high and ultra-high vacuum, are easy to operate and are exceptionally reliable. In connection with a well rated backing pump, pressures below 10⁻¹⁰ mbar (0.75 x 10⁻¹⁰ Torr) can be attained.

Leybold offers two product lines:

- 1. TURBOVAC line Turbomolecular pumps with mechanical rotor suspension
- 2. TURBOVAC MAG line Turbomolecular pumps with magnetic rotor suspension

Each of the two product lines contains "classic" turbomolecular pumps as well as turbomolecular pumps with a compound stage.

Leybold is one of the world's leading manufacturer of turbomolecular pumps. Consequently, the TURBOVAC and the TURBOVAC MAG pumps are successfully used in many applications. A list of the most important ones is given in the table "Applications" in the section "General".

Principle of Operation

The turbomolecular pump is a turbine with blades. By the momentum transfer from the rapidly rotating rotor blades to the gas molecules their initially non-directed thermal motion is changed to a directed motion.

TURBOVAC TW 70 H turbomolecular pump with mechanical rotor suspension and dual compound stage

TURBOVAC TW 361 turbomolecular pump with mechanical rotor suspension

MAG W 1500 CT turbomolecular pump with magnetic rotor suspension and compound stage

Hence, the pumping process in a turbomolecular pump results from the directed motion of the gas molecules from the inlet flange to the fore-vacuum port.

In the **molecular flow range** - i.e. at pressures below 10^{-3} mbar (0.75 x 10^{-3} Torr) - the mean free path of the gas molecules is larger than the spacing between rotor and stator blades (typically some tenths of a millimeter). Consequently, the molecules collide primarily with the rotor blades with the result that the pumping process is highly efficient.

In the range of laminar flow, i.e. at pressures over 10^{-1} mbar (0.75 x 10^{-1} Torr) the situation is completely different. The effect of the rotor is impaired by the frequent collisions between the molecules. Therefore, a turbomolecular pump is not capable of pumping gases at atmospheric pressure thus necessitating the use of a suitably rated forevacuum pump.

To create the directed motion of the gas molecules, the tips of the rotor blades have to move at high speeds. Hence, a high rotational speed of the rotor is required. In the case of Leybold turbomolecular pumps the rotor speeds vary from about 36,000 rpm for the larger rotor diameters (e.g. TURBOVAC 1000 about 20 cm (7.87 in.)) to 72,000 rpm. for small rotor diameters (e.g. TURBOVAC 50 about 6 cm (2.36 in.))

Characteristic Quantities

Pumping speed (volume flow rate), S, $[I \times s^{-1}]$

The pumping speed for a given type of gas depends on the diameter of the rotor and the high vacuum flange, the rotor/stator design, the rotor speed and the molecular weight of the gas.

The pumping speed S is a non-linear function of the inlet pressure p_1 : S = S(p_1).

Gas throughput, Q, [mbar x I x s⁻¹] Gas throughput Q is linked to the pumping speed S and the inlet pressure p_1 through the relationship $Q = Q(p_1) = p_1 \cdot S(p_1)$.

The maximum permissible gas throughput Q_{max} is attained at the maximum permissible inlet pressure

 $p_{1, \text{max}}: \mathbf{Q}_{\text{max}} = \mathbf{Q}(\mathbf{p}_{1, \text{max}}).$

Compression, K

For a given type of gas, compression K is defined as the ratio between forevacuum pressure p_{VV} (= pres-sure on the forevacuum side of the turbomolecular pump) and the highvacuum pressure p_{HV} (= pressure on the highvacuum side of the turbomolecular pump):

 $k = k(p_{VV})$

 $= p_{VV} / p_{HV} = p_{VV} / p_{HV} (p_{VV}).$

Compression depends very much on the gas throughput: at a given forevacuum pressure, compression increases when the gas throughput is reduced.

Idle compression, Ko

Idle compression K₀ of a turbomolecular pump is defined as the amount of compression of this pump at "Zero" gas throughput. What is problematic about this definition is the fact that the demanded "Zero" throughput can never be implemented in practice (finite leak rate, degassing of sealing components, desorption from wall surfaces). Data on idle compression need therefore to be gained from measurements run at extremely low throughputs. Idle compression of a pump equipped with metal seals is significantly higher compared to the same pump sealed with O-rings.

Ultimate pressure (base pressure), p_{ult}, [mbar]

The ultimate pressure of a turbomolecular pump is defined as that pressure which is attained in the test chamber 48 hours after a 24 hour degassing period of the measurement system.

The ultimate pressure will chiefly depend on the foreline pump used and the type of seal used at the highvacuum flange.

TURBOVAC Product Line

The TURBOVAC pumps are turbomolecular pumps with mechanical rotor suspension which are used in the pressure range from 10^{-1} mbar (0.75 x 10^{-1} Torr) to 10^{-10} mbar (0.75 x 10^{-10} Torr). Pumping speeds for air vary from 35 I x s⁻¹ (inlet flange diameter = 40 mm (1.57 in.)) to 1,600 I x s⁻¹ (inlet flange diameter = 250 mm (9.84 in.)).

Through the compact design, the most reliable ceramics ball bearings and the simplicity of operation, this line of pumps is used in all highvacuum and ultrahigh vacuum areas of application.

In particular the TURBOVAC pumps are very successfully operated in mass spectroscopy applications, gas and liquid chromatographic analysis, CD, DVD and hard disk production, manufacturing of large-surface optical layers, and non-corrosive semiconductor fabrication processes.

The most important advantages of the TURBOVAC product line are:

- Oil-free pumps for the generation of clean high and ultra-high vacuum conditions
- Highly performance in any orientation
- Highly degree of operating reliability
- Easy to operate
- Compact design

Ceramic Ball Bearings Technology

All TURBOVAC pumps are fitted with ceramic ball bearings, i.e. ceramic balls are running in steel races. The bearings are lubricated for life by grease.

Ceramic balls are lighter, harder and smoother than balls made of steel. Therefore, with ceramic balls the wear on the races is significantly reduced. Consequently, the lifetime of the bearings, and hence the lifetime of the pump, is increased.

The **TURBOVAC pumps** fitted with grease-lubricated ceramic ball bearings **can be mounted in any orientation**. As the ball bearing is encapsulated, the grease can not enter the highvacuum space, even if the pump is mounted up-side-down.

В F_{1,2,3} E� Α High-vacuum flange в Forevacuum flange С Venting flange D Purge gas flange Е Water cooling connection F Electrical connection F1 Connection for DC motor F_2 Connection for regulator

F₃ Connection for axial sensor

Flange designations used in this product section

Components supplied with the Turbomolecular

Pumps

Highvacuum Flange

- KF, ISO-K and ISO-F models
- Accessories need to be ordered separately

ANSI Models

O-ring included in the delivery

CF Models

Without gaskets ¹⁾, but with screws ²⁾

Forevacuum Port

Centering rings, O-rings and clamps for all KF type forevacuum flanges are included.

Purge / vent ports are blanked-off

For CF gaskets, see Product Section C15
Only for MAG pumps

TURBOVAC MAG Product Line

The TURBOVAC MAG pumps are turbomolecular pumps with magnetic rotor suspension which are used in the pressure range from 10^{-1} mbar (0.75 x 10^{-1} Torr) to 10^{-10} mbar (0.75 x 10^{-10} Torr). Pumping speeds for air vary from 300 I x s^{-1} (inlet flange diameter = 100 mm (3.94 in.)) to 2,000 I x s⁻¹ (inlet flange diameter = 250 mm (9.84 in.)).

The TURBOVAC MAG pumps are mostly installed on semiconductor processing lines like etching, CVD, PVD and ion implantation, i.e. in applications where corrosive gases need to be pumped. Also electron beam microscopy is an important area of application for these pumps.

The most important advantages of the TURBOVAC MAG product line are:

C09

- Hydrocarbon-free pumps for the generation of clean high and ultrahigh vacuum conditions
- High performance in any orientation
- High degree of operating reliability
- Extremely low vibration
- Designed for pumping of corrosive gases

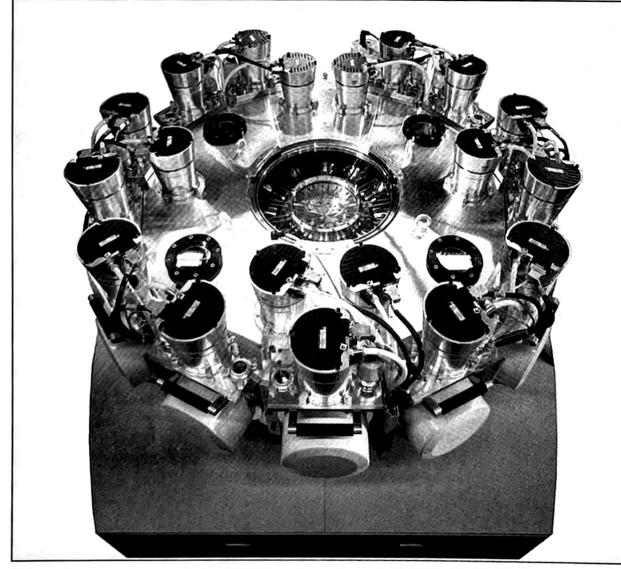
Leybold Vacuum Full Line Catalog 2005

Turbomolecular Pumps

Use of Turbomolecular Pumps in Analytical Instruments

All modern analytical methods for gas, liquid and plasma analysis – like for example GC-MS, LC-MS and ICP-MS – rely on mass spectrometers and for this reason require adequate highvacuum conditions. Also in electron microscopes and many surface analysis instruments the production of a highvacuum is essential.

In over 90 % of all highvacuum applications, the turbomolecular pump has been found to be ideal. Thanks to the hydrocarbon-free vacuum, most simple operation, compact design and almost maintenance-free operation it has in most cases displaced above all the diffusion pump.


On the basis of decades of experience and in cooperation with research facilities and the manufacturers of analytical instruments, Leybold has continually optimized its products.

The new TURBOVAC wide range series is a further innovative step forward making available products which are most flexible and reliable.

Owing to the modular concept the user may

- adapt his vacuum system precisely to his requirements
- perfectly integrate the components within his system and
- find the most cost-effective system configuration for his needs.

In combination with backing pumps like the TRIVAC or Scroll pump, Leybold is able to offer the best vacuum system optimized for all major applications in the area of analytical instrumentation.

Use of Turbomolecular Pumps in the Area of Semiconductor Processes

In the semiconductor industry turbomolecular pumps are used on the following processes, among others:

- Etching
- Sputtering
- Ion implantation
- CVD
- Lithography.

In these applications pumping of aggressive gases is often required.

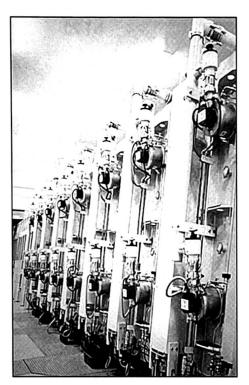
This may necessitate the use of pumps equipped with a purge gas facility or a magnetic suspension in order to avoid damaged bearings. Especially during metal etching, deposits may occur in the forevacuum space of the turbomolecular pump. In order to prevent this the pumps must be heated to a certain temperature. Such temperature controlled variants are optionally available for the MAG 1500 C, MAG 2000 C, MAG 2800 and MAG 3200. In contrast to turbomolecular pumps with mechanical bearings, magnetically levitated pumps provide the advantage that they prevent overheating of the bearings at high gas flows and effectively exclude any damage to the magnetic bearings by aggressive media.

In electron microscopes and in lithographic equipment, low vibration levels are exceptionally important. For this reason magnetically levitated turbomolecular pumps should be used here.

Entire high vacuum equipment of a CD/DVD coating system with TURBOVAC TW 250 S pumps

The recommended backing pumps are either dry compressing EcoDry pumps or rotary vane pumps from the TRIVAC range, possibly fitted with the BCS system.

General

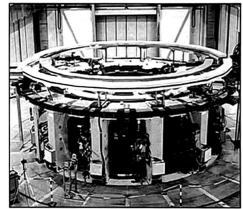

Turbomolecular Pumps

Use of Turbomolecular Pumps in the Area of Coating Systems

Coating of optical and magnetic storage media, optical components as well as architectural glass requires highvacuum conditions. This is the only way to ensure that the formed layers will be uniform and adhere to the substrate.

The way in which the vacuum is generated has a significant impact on the quality of the coating. By pumping the vacuum chamber down to pressures in the range of 10⁻⁶ mbar (0.75 x 10⁻⁶ Torr), interfering gas and water molecules are removed from the processing chamber. In the case of sputtering the coating process is run in the pressure range between 10-3 and 10⁻² mbar (0.75 x 10⁻³ and 0.75 x 10⁻² Torr), and in the case of evaporation coating, pressures below 10⁻⁴ mbar (0.75 x 10⁻⁴ Torr) are utilized.

The turbomolecular pump meets all requirements of the customers as to a hydrocarbon-free vacuum, very simple operation, compact design and almost maintenance-free operation in an almost ideal manner. The range of pumps from Leybold includes des pumps with flange diameters ranging from 40 mm to 250 mm (1.57 in. to 9.84 in.) nominal width. Thus the right pump is available for each application, be it coating of data memories (CD, DVD, hard discs), coating of tools and coating of precision lenses in the area of optical components, displays or architectural glass.



High performance glass coating plant

Research and Development

In the area of research, all types of turbomolecular pumps from Leybold are being used.

In the case of particularly stringent requirements such as low vibration levels, a TURBOVAC with magnetic bearings should be selected; the same applies to those applications in which entirely hydrocarbon-free pump systems are required.

Nuclear fusion technology

C09